
EZ Replay Manager
App Version: 1.53
Document version: 3.1
Last Update: 14 december 2013
Required Unity version: 4.2.2 or above
Author: SoftRare - www.softrare.eu
Genre: Unity3d plugin
Description: This tool allows you to record any game for
direct replay. Record any game scene and replay it backwards
or with double speed! It can also easily record camera
movement. In version 1.5 a new feature has been introduced
on popular demand: save replays to file and review them later.

Legal information: You may only use and change the code if you purchased the whole package in
a legal way.

Always find the most recent version of this document here:
http://www.softrare.eu/unity/EZReplayManager/Readme.pdf

Table of Contents
1. What is this?...1
2. Features...2
3. Quick start..2

Non-programmers:...2
If you feel comfortable programming, the steps are equally easy:............2

4. Advanced Programming How-To...3
4.1 EZReplayManager-API details...3
4.2 Saving to and loading from file...5
4.3 Important variables...6
4.4 Extending the EZ Replay Manager...9

4.4.1 Extending which values are recorded...9
4.4.2 Extending with callbacks..10

5 Known issues...12

1. What is this?
The EZ Replay Manager is an extension for Unity3d which allows you to record whole games or
only parts of it, and replay it back while being able to precisely configure what possibilities for
configuration the user has.

http://www.softrare.eu/

2. Features
 Record any game object (also cameras, rigidbodies, characters,...).
 Specify easily what should be recorded.
 Programming skills not necessarily required.
 Configure whether the user should be able to interact (starting/ending the

recording/replay).
 Change replay speed, pause, stop, rewind
 Full heavily commented source code
 Fully extendable
 Since version 1.5: To lower the amount of data only real changes are being recorded

(keyframe method)
 Since version 1.5: Save a recorded replay to a file and reload it when you please.
 Since version 1.5.3: In-editor documentation
 Since version 1.5.3: callback functions to be able to intervene in certain situations
 Since version 1.5.3: functionality to support a wider range of complex GameObjects

3. Quick start

Usage is extremely easy: If you have an easy scene without game object instantiation you don't
even have to be able to program.

1. Drag the prefab EZReplayManager into your scene.

Non-programmers:
2. Click on it in the scene hierarchy. It has a list called Game Objects To Record.
3. Drag your crucial game objects from the scene just on the list itself (right above the Size
field). Leave all other EZReplayManager-parameters as they were.
(Continue reading at step 5 below..)

If you feel comfortable programming, the steps are equally easy:
2. Make a new script, call it ObjectToRecord.cs (for example).
3. In the start-function type the following:

void Start() {
EZReplayManager.get.mark4recording(gameObject);

}

4. Drag this script on all prefabs and gameObjects which you would like to have recorded.

5. Start your game.
6. Hit Start recording and play your game.
7. Hit Stop recording to stop without viewing the replay, and Replay to do both instantly.

Congratulations You have just recorded and replayed your first game scene!

See a working demo at http://www.softrare.eu/ez-replay-manager.html

Need support? Get it for free in this thread: http://forum.unity3d.com/threads/92854-EZ-Replay-
Manager

In order to save replays to and load from files please view chapter 4.2 of this document.

4. Advanced Programming How-To

4.1 EZReplayManager-API details
For comfortable recording and replaying any game, it is important to understand the plugin
structure. Fortunately, this is easy as pie. In this chapter we will walk you though a number of
important functions and variables that you are able to use in order to exactly implement the
functionality you need.

If you are using this plugin since an earlier version you will notice very slight changes, but
nothing earth shattering

If you are the “self-teaching” type of programmer, we additionally encourage you to use a
scripting editor like MonoDevelop (comes with Unity by default) to explore the plugins
possibilities with the syntax highlighting feature:

1.
In one of your own scripts type

EZReplayManager.

to be able to view all static variables and functions the plugin has to offer.

Then, and more importantly, type

EZReplayManager.get.

to be able to view all variables and functions bound to the singleton instance of the plugin.

2.
While your game is running, you can basically mark any game object (also cameras, skies, GUI
elements, and of course objects crucial for the game) to be recorded by calling

EZReplayManager.get.mark4recording(YOUR_GAME_OBJECT_HERE);

http://forum.unity3d.com/threads/92854-EZ-Replay-Manager
http://forum.unity3d.com/threads/92854-EZ-Replay-Manager
http://www.softrare.eu/ez-replay-manager.html

Nothing will happen so far. The only thing you say to the Unity engine and the EZ Replay
Manager framework is this: "When I hit record, observe this game object, record what it does!".
So you haven't hit that yet (to let the plugin save a recording to file, read chapter 4.2 of this
document).

As of version 1.53 there is a new feature to be used with complex objects in which children
change order/structure during gameplay. For recording objects like that call

EZReplayManager.get.mark4Recording(YOUR_GAME_OBJECT_HERE,
“”, ChildIdentificationMode.IDENTIFY_BY_NAME);

Note that when using this method you should make sure all children of this particular
GameObject have unique names.

We will discuss the parameter in the middle (prefabLoadPath) shortly.

3.
To actually record, call

EZReplayManager.get.record();

Or just use the in-game GUI.

The framework will record the game objects you ordered it to record, for every frame, for every
object. From this moment on you can still say

EZReplayManager.get.mark4recording(YOUR_GAME_OBJECT_HERE);

 So this is useful to use on game objects which were created dynamically by calling
GameObject.Instantiate(..) after recording started. Or just put on them the above mentioned
ObjectToRecord.cs.

4.
So all this was pretty easy. Now it comes to replaying your game. Keep in mind that between
switching the recorder actions such as record, play, and rewind, you should call

EZReplayManager.get.stop();

5.
This resets some important variables and avoids warnings being displayed. So now call stop, and
then

EZReplayManager.get.play(0);

The parameter 0 says that the replaying speed should be the recording speed, so no speeding up
or slowing down. You can do that by giving a value above 0 (standard between 1 and 5) for
speeding up, and below 0 (standard between -3 and 3) for slowing down.

If you like to add some additional parameters that's fine too Here is the declaration of the
function play:

public static void play(int speed, bool playImmediately, bool
backwards, bool exitOnFinished) {

...
}

So we discussed the first speed parameter. The next (playImmediately) tells the replay manager
to start the replay immediately when in replay-mode without waiting for some user input.
backwards results in the first replay being played in the opposite chronological order.. starting
with the end of your recorded game back to the start. While in replay-mode, exitOnFinished exits
the replay once the replay has been finished.
So,

EZReplayManager.get.play(-1,false,true,true);

i.e. results in a replay a little slower than normal, the replay won't start immediately, but played
backwards by default and the replay mode exits after the replay is finished.

4.2 Saving to and loading from file

Save a just recorded replay to a file by calling

EZReplayManager.get.saveToFile(filename);

Load an earlier saved replay by calling

EZReplayManager.get.loadFromFile(filename);

(or press the corresponding button in the included examples)

The parameter filename can be a relative (i.e. only replay.ezr , the file is then being saved or
loaded from the project directory) or absolute filename (including filepath). The demo scenes
which are shipped with the package already have save- and load-buttons integrated.A few things
have to be kept in mind:

1. The EZReplayManager does not save whole GameObjects (including meshes, scripts,
ect) to the file. It only saves to file, what is preconfigured to (by default only position,
rotation and if a GameObject emits particles. You are free to add anything to your liking.
How to do this, is described in chapter 4.4 of this document).

2. That means the GameObject-data has to be taken from somewhere when loading a replay.
So there has to be ready-to-use prefab from which the GameObject can be loaded. You
can specify a prefab-path yourself or you can let the plugin precache GameObject
structures for you. Keep in mind that the precaching process can take quite a while to
finish. That leads to the following ground rule:

IMPORTANT: In order to save recordings to file and to recover them afterwards you have to
enable the option precacheGameObjects in the EZReplayManager-prefab.

Precaching actually has other benefits than only being able to save to file. If children of your
gameobject are being deleted during gameplay, this option is mandatory in order for the plugin
to be able to replay correctly.

To avoid precaching on a certain GameObject you can specify prefab-paths yourself. Put your
GameObject in a directory called Resources and mark the GameObject like that:

EZReplayManager.get.mark4Recording(YOUR_GAME_OBJECT_HERE,
PREFAB_LOAD_PATH_HERE);

One Example for this is example1.unity scene included in the package, where you have the
following line in the file Heli2record.cs:

EZReplayManager.get.mark4Recording(gameObject,"Heli");

Heli is a prefab in EZReplayManager/example1/Resources . By using this function call the
chopper prefab itself doesn't have to be precached in
Assets/Resources/EZReplayManagerAssetPrefabs/ (which it otherwise would). To clear the
cache you can always just remove this directory.

Note: Children objects of GameObjects will always be precached if precacheGameObjects is
activated.

4.3 Important variables
Dealing with these variables is not absolutely necessary if you are satisfied with the standard
behavior of the replay manager. But in some situations it can be helpful.

1.
Most importantly and foremost it has to be said that as of version 1.53 documentation for the
most commonly used variables has been moved inside the Unity3d Editor. There, read
documentation on how to handle the all important EZReplayManager-prefab which has to be
instantiatated in your scene in order to activate any replay-functionality. Just enable “show
hints/documentation here”.

Find additional documentation in the following paragraphs:

2.
public const bool showErrors = true; //default: true
public const bool showWarnings = true; //default: true
public const bool showHints = false; //default: false

Declare here what kind of messages you would like to receive in the console. Set them in the
code.

3.
public bool useRecordingGUI = true; //default: true
public bool useReplayGUI = true; //default: true

Use this to set whether you want to display the graphical user interfaces that the user playing
your game can record, stop, replay, rewind, speed up and speed down all by himself without you
having to implement the replay managers API.

4.
public float recordingInterval = 0.05f; //default: 0.05f
public const int maxSpeedSliderValue = 3; //default: 3
public const int minSpeedSliderValue = -3; //default: -3

These values have immediate influence on the recorders performance. recordingInterval is the
rate by which the manager records your game. 0.05 means 20 frames per second (fps). So the
manager will record 20 states per second per object. Receive the number of frames by calculating
1/recordingInterval. If this is too high as update rate (meaning recordingInterval is too low
actually) you will notice it by the replay going slower than your recording (your game scene)
actually went. If the value is too low as update rate(meaning you should actually lower
recordingInterval) you will notice this by your replay being played choppy. Find the right value
for your game by adjusting it. A good strategy is to try 0.04 (25 fps) and lower it until you are
satisfied.

Because this variable also has a lot of influence on the amount of data which is being created
when recording, please refer to chapter 5 of this document when experiencing problems while
saving or loading replays (from hard disk).

The other values determine how much the game can be speeded up (maxSpeedSliderValue) and
slowed down (minSpeedSliderValue) in replay mode.

5.
public List<GameObject> gameObjectsToRecord = new

List<GameObject>();
public List<string> componentsAndScriptsToKeepAtReplay = new

List<string>();

The first list is meant to help newcomers who are not comfortable to program yet. You can drag
and drop your game objects in design time here to have them marked for recording in the real
game.

The second can be of importance if you have important scripts on your game objects which you
don't want them to lose even if the game objects are currently in replay mode. Normally all
scripts except for some vital are being deleted in this mode, but you can type in the name of the

scripts and components here which you want to keep while a game object is in replay mode. For
excluding CharacterController (not recommended) call

componentsAndScriptsToKeepAtReplay.add("CharacterController");

Don't worry, your original game objects won't be touched at all, the replay manager will not
delete any scripts on them, just on their replay-clone counterparts.

The use of this feature is demonstrated in example scene 1 (included in the package).

6.

protected ViewMode currentMode = ViewMode.LIVE;
protected ActionMode currentAction = ActionMode.STOPPED

currentMode and currentAction are important values. currentMode can have two values:
ViewMode.LIVE and ViewMode.REPLAY . ViewMode.LIVE is set when the real gameplay is
going on. ViewMode.REPLAY is set when the plugin is playing a recording.

currentAction describes the pretty self explanatory states in which the recorder can be in.. his
values can be ActionMode.RECORD, ActionMode.PLAY, ActionMode.PAUSED and
ActionMode.STOPPED.

To request the values from outside use these two functions:

if (EZReplayManager.get.getCurrentAction() ==
ActionMode.PLAY)

//...your code here...
}

if (EZReplayManager.get.getCurrentMode() == ActionMode.LIVE)
//...your code here...

}

7.

private int recorderPosition = 0;

This variable also has big impact on the component. It describes at what recorder position the
component currently is. It can be requested via this function from the outside of the class:

EZReplayManager.get.getCurrentPosition();

4.4 Extending the EZ Replay Manager

4.4.1 Extending which values are recorded

The extension is very generic, should work on all games, but of course it is also easily
extendable: Until now only the information for position, rotation and whether particles are
emitted are being saved. So if your game object does something fancy, like i.e. being destroyed
in a long lasting explosion, which slowly evaporates it. You should extend the file SavedState.cs
with the code of the value for evaporation.

First declare 2 instance variables

private bool evaporates;
private float evaporationValue;

The first (constructor) determines whether the evaporation takes place, the second, at what stage
the evaporation is "right now". Let’s say responsible for the evaporation is a script called
Evaporator. Add in the constructor:

if(go.GetComponent<Evaporator>()) {
this.evaporates = go.GetComponent<Evaporator>().evaporates;
this.evaporationValue =

go.GetComponent<Evaporator>().evaporationValue;
}

So now the evaporation value is saved for every frame for every game object which has a
component Evaporator. In these examples it has two values, which can be received and set:
evaporates says whether the evaporation has been started, evaporationValue returns the value
(for example 0f for no evaporation, and 1f for total destruction). To be able to see this in replay
add the following line to your code (in some Start()-function).

componentsAndScriptsToKeepAtReplay.add("Evaporator");

The same can be done by editing this property in Unity3d Editor GUI on the
EZReplayManager prefab.

Now back to SavedState.cs: In the function synchronizeProperties we determine what happens
when the game is being played back to the user. Add the following:

if (this.evaporates)
go.GetComponent<Evaporator>().evaporationValue =

this.evaporationValue;
else if (go.GetComponent<Evaporator>())

go.GetComponent<Evaporator>().evaporates = false;

So if in this particular frame the evaporation was set to exist, we set the value like the one which
was saved. If not we switch the evaporation off.

As of version 1.5 we have to further add code to a comparison function. Add this in the bottom
of the body of isDifferentTo(SavedState otherState):

if (!changed && (evaporates != otherState.evaporates ||
evaporationValue != otherState.evaporationValue))

changed = true;

This is important to support the new recording method of this extension, to only record frames
where a real change took place (keyframe method).

4.4.2 Extending with callbacks

As of version 1.53 you can now use callback functions in your own gameObjects to not have to
overwrite the plugin classes unnecessarily (which a future update could again overwrite). To use
them enable sendCallbacks on the EZReplayManager-prefab instantiated in your scene. You
will see a new list appearing beneath that where you can configure which callback functions
actually will be executed.

Just add one of the functions in the following list to one of your game objects. The callbacks are
sent to all game objects in the scene so it does not matter which one you choose.

Function declaration Executed when?

void __EZR_live_prepare() {
}

Executed when still in replay mode just before
the scene is prepared to switch to live scene
again.

void __EZR_live_ready() {
}

Executed when just switched to live scene
again.

void __EZR_replay_prepare() {
}

Executed when still in live mode just before
the scene is prepared to switch to replay mode.

void __EZR_replay_ready() {
}

Executed when just switched to replay mode.

void __EZR_record() {
}

Executed when recording is being started.

void __EZR_play() {
}

Executed when recording is being played.

void __EZR_pause() {
}

Executed when replay is being paused.

void __EZR_stop() {
}

Executed when stop is being called.

In order to save resources you can choose to just leave those functions in the list on the prefab
which you actually need and use.

The use of callbacks is demonstrated in demo example 1 (included in the package) in file
DrawLines.cs.

5 Known issues

1. System- and gameload: If you are recording a very heavy game scene or your system is
very busy while recording, it is possible that the time delay between two frames is
different on replaying. This can result in a situation where the replay has a different
playing-length than the scene which was actually recorded. Due to these unpredictable
variables as system- and gameload a replay in many cases is not of exactly the same
length as the live scene which was recorded, although we took a lot of trouble canceling
out visible differences.

2. (PROBLEM NOT SEEN ANYMORE AS OF UNITY 4.2.2, SOLVED?)

We noticed that saving files to hard disk and especially loading files from hard disk can become
very heavy operations. The higher the amount of data, which has to be written to file, the higher
the possibility of the occurrence of a Unity bug: If the amount of data to be saved to file exceeds
approximately 100 MB and the amount of data to be loaded from file exceeds approximately 50
MB it is not unlikely that you will experience an application crash accompanied with the error
message: Fatal error in gc: Too many heap sections. This is not a bug of the EZ Replay Manager,
actually maybe not even a bug in Unity, but in Mono or even more underlying application layer
(like gc). Please refer to the following urls on this bug:

a. http://answers.unity3d.com/questions/161653/memory-leak-adventures-in-editor-
34-lot-of-instant.html

b. http://answers.unity3d.com/questions/137224/laggy-gameplay-and-occasional-
crashes.html

c. http://kerbalspaceprogram.com/forum/index.php?topic=2631.0

d. http://www.inkscapeforum.com/viewtopic.php?f=22&t=3336

e. http://forum.unity3d.com/threads/58746-Fatal-error-in-gc-Too-many-heap-
sections

f. http://answers.unity3d.com/questions/184680/memory-leak-gallore.html

g. http://kerbalspaceprogram.com/forum/index.php?topic=6220.0

The bug seems to be well known and hopefully the Unity developers will address this
issue very soon (i.e. by updating the technical platform Unity runs on). As far as we now
know the error occurs when deserializing the data from a saved file, because not the
amount of data in the memory is the problem but the amount of data when deserializing.
On the other hand deserializing is 1 command, and there is little chance of writing this
command somehow in a way that circumvents this bug.

Don’t get it the wrong way: The amount of data you have to save or load to receive is bug
actually enormous: You have to have tenth of objects which are permanently moving
“preferably” at a high sampling rate (recording interval) and are being recorded for quite
a long time. So in theory it is possible to receive this bug when endlessly spawning

http://answers.unity3d.com/questions/184680/memory-leak-gallore.html
http://forum.unity3d.com/threads/58746-Fatal-error-in-gc-Too-many-heap-sections
http://forum.unity3d.com/threads/58746-Fatal-error-in-gc-Too-many-heap-sections
http://www.inkscapeforum.com/viewtopic.php?f=22&t=3336
http://kerbalspaceprogram.com/forum/index.php?topic=2631.0
http://answers.unity3d.com/questions/137224/laggy-gameplay-and-occasional-crashes.html
http://answers.unity3d.com/questions/137224/laggy-gameplay-and-occasional-crashes.html
http://answers.unity3d.com/questions/161653/memory-leak-adventures-in-editor-34-lot-of-instant.html
http://answers.unity3d.com/questions/161653/memory-leak-adventures-in-editor-34-lot-of-instant.html

objects, permanently moving them and recording with a high sample rate and for a long
time. But in practical situations you will likely not experience it, if you yourself take care
of performance and memory only a little bit. A good tip for a very crowded scene i.e. is to
lower the frames per second (fps) to be recorded. Also when involving animations a
frame rate of 12.5 fps (recording interval of 0.08) gives you absolutely fluent replays and
does not damage the user experience of it, but actually cuts the amount of data to be
written to file in half (in comparison to 25 fps = recording interval of 0.04). By data only
the data is meant which changes from frame to frame (on default that is position, rotation
and if a gameobject is emitting particles, please see chapter 4.4 for easily add properties
to be recorded). Meshes and other data are not included. The size of the mesh of your
gameobject does not matter for the size of the file which is being written to hard disk.

Because of it being a bug not caused by this extension but rather by one or a combination
of different application layers beneath it, it is very possible that it will be fixed in the
future just by updating Unity! Nevertheless we will keep a close eye on this and try to
give you the best advice on lowering your data which is to be recorded and continue to
lower the overall data which is being saved to file. Because of this bug we introduced a
new recording method in version 1.5: Rather than saving everything in any frame we are
now using a keyframe system to only record actual changes.

3. Saving and loading big amounts of data can take several seconds.

4. Webplayer builds cannot save to file because they are run in a browser sandbox.

5. Iphone and Windows 8 store builds cannot handle serialization yet, so on these platforms
replays cannot be saved/loaded from file.

6. (PROBLEM PROBABLY SOLVED AS OF VERSION 1.53, read chapter 4.1 about
ChildIdentificationMode)
Swapping children of gameObjects or changing the order of them can lead to problems
when replaying.

7. (PROBLEM NOT SEEN ANYMORE AS OF VERSION 1.53, SOLVED?)

Using OnDestroy() on gameObjects which are to be recorded to destroy the whole
gameObject once called (when the script gets removed from the gameObject) will lead to
problems when replaying.

8. (PROBLEM NOT SEEN ANYMORE AS OF VERSION 1.53)
EZReplayManager class uses SetActive to reactivate the real gameObject once
replay is done. In a future version the system will remember which chrildren were active
and which weren't before replay. Stay tuned!

9. When you selected to precache gameobjects it is possible at the first run of a scene you
get the message “Error moving file”. That is not to worry. Just click “Try again”. This
will only show at first precache of a gameobject. Later this will not occur anymore.

10. If you encounter the following error: Destroying components immediately is not
permitted during physics trigger/contact or animation event callbacks. You must use
Destroy Instead.

Thanks to ninjaboyjohn the problem can be solved: http://forum.unity3d.com/threads/ez-
replay-manager.92854/page-16#post-1654067

If you experience undocumented errors or know a possible solution to one of these issues
please let us know. Your input can make a very valuable difference.

Need support? Get it for free in this thread: http://forum.unity3d.com/threads/92854-EZ-
Replay-Manager

http://forum.unity3d.com/threads/ez-replay-manager.92854/page-16#post-1654067
http://forum.unity3d.com/threads/ez-replay-manager.92854/page-16#post-1654067
http://forum.unity3d.com/threads/92854-EZ-Replay-Manager
http://forum.unity3d.com/threads/92854-EZ-Replay-Manager

	1. What is this?
	2. Features
	3. Quick start
	Non-programmers:
	If you feel comfortable programming, the steps are equally easy:

	4. Advanced Programming How-To
	4.1 EZReplayManager-API details
	4.2 Saving to and loading from file
	4.3 Important variables
	4.4 Extending the EZ Replay Manager
	4.4.1 Extending which values are recorded
	4.4.2 Extending with callbacks

	5 Known issues

